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Effective geometry for light traveling in material media
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Working with electrodynamics in the geometrical optics approximation, we derive the expression represent-
ing the ‘‘effective geometry’’ seen by electromagnetic waves propagating in media whose physical properties
depend on an external electric field. Some previous results are generalized and some special cases are recov-
ered.
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Material media are seen by electromagnetic waves a
curved space-time described by an effective metricgmn ,
which consists in a modification of the Minkowski bac
ground metrichmn . This fact allows one to make an analog
between wave propagation in nontrivial media and grav
tional phenomena. One work in this direction was perform
by Gordon@1#, in which a particular moving isotropic dielec
tric medium appears to light as a gravitational field dema
ing light to follow paths of the geometry

gmn5hmn2~12em!VmVn, ~1!

whereVm represents the velocity four-vector of an observ
comoving with the medium observer. Analog models
general relativity have extensively been examined in the
years, not only with respect to electrodynamics but also
the context of acoustic perturbations~for a good review on
this topic, see Ref.@2#, and references therein!. Recently,
some authors dedicated their efforts in the study of li
propagating in material media@3–8#. In such a situation,
Maxwell’s equations must be supplemented by constitu
laws that relate the electromagnetic excitationsDW , BW and the
field strengthsEW , HW by means of quantities characterizin
each medium where the waves are propagating.

In this paper, assuming the media to be generally an
tropic and working with Maxwell’s theory in the geometric
optics approximation, we present the effective geometry
termining the possible paths of light in terms of quantit
associated to the properties of the medium. We exami
some special cases where the effective metric relates kn
situations, and finally, make some comments on the app
tion and importance of the effective geometry interpretati
We work in Minkowski space-time, employing a Cartesi
coordinate system. The background metric will be rep
sented byhmn , which is defined by diag~11, 21, 21, 21!.
Units are such thatc51.

Fmn and Pmn are the tensors representing the total el
tromagnetic field, which are expressed in terms of
strengths and the excitations of the electric and magn
fields as

Fmn5VmEn2VnEm2hmn
abVaBb , ~2!
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Pmn5VmDn2VnDm2hmn
abVaHb , ~3!

where the Levi-Civita tensor introduced is defined such t
h0123511.

In general, the properties of the media are determined
the tensors«ab and mab , which relate the electromagneti
excitation and the field strength by the generalized const
tive laws,

Da5«a
b~Em ,Hm!Eb , ~4!

Ba5ma
b~Em ,Hm!Hb . ~5!

In the absence of sources, Maxwell’s theory can be sum
rized by the equations

VmD ,n
n 2VnD ,n

m 2hmnabVaHb,n50, ~6!

VmB ,n
n 2VnB ,n

m 1hmnabVaHb,n50, ~7!

which are equivalent toP ,n
mn 50 andF

*
,n

mn 50, respectively.
Additionally, the electromagnetic excitation is related to t
field strength by means of the constitutive relations~4! and
~5!, whose derivatives with respect to the coordinates can
presented as

Da,t5«a
bEb,t1

]«a
b

]Em
EbEm,t1

]«a
b

]Hm
EbHm,t , ~8!

Ba,t5ma
bHb,t1

]ma
b

]Em
HbEm,t1

]ma
b

]Hm
HbHm,t . ~9!

In order to determine the propagation of waves associa
to the electromagnetic field, we will consider the method
field discontinuities@9,10#. We define a surface of discont
nuity S by z(xm)50. WheneverS is a global surface, it
divides the space-time in two distinct regionsU2 for z,0,
andU1 for z.0. The discontinuity of an arbitrary function
f (xa) on S is given by

@ f ~xa!#Sª lim
$P6%→P

@ f ~P1!2 f ~P2!# ~10!

with P1, P2, andP belonging toU1, U2, andS, respec-
tively. The electric and magnetic fields are continuous wh
crossing the surfaceS. However, its derivatives behave a
©2002 The American Physical Society12-1
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@Em,n#S5emKn and @Hm,n#S5hmKn , whereem and hm are
related with the polarization of the electromagnetic wav
andKl is the propagation vector. Applying these conditio
to the field equations~6! and~7!, we obtain the following set
of equations governing the wave propagation:

«abKaeb1
]«ab

]Em
EbKaem1

]«ab

]Hm
EbKahm50, ~11!

mabKahb1
]mab

]Em
HbKaem1

]mab

]Hm
HbKahm50, ~12!

S « eb

mb 1
]«mb

]Ea
Ebea1

]«mb

]Ha
EbhaD ~KV!1hmnabKnVahb

50, ~13!

S mmbhb1
]mmb

]Ea
Hbea1

]mmb

]Ha
HbhaD ~KV!

2hmnabKnVaeb50, ~14!

where we have defined (KV)ªKmVm . @The first two equa-
tions above came from the zeroth component of Eqs.~6! and
~7!, and correspond to the generalized Gauss laws for ele
and magnetic fields.#

For those cases where«ab5«ab(Em ,Hm) and mab
5m(hab2VaVb), the above system of equations governi
the wave propagation reduces to the scalar equation

« naKnea1
]«nb

]Ea
KnEbea

1
1

m~KV!

]«nb

]Hm
hmts

aEbKt KnVsea50, ~15!

which follows from Eqs.~11! and~14!, and to the eigenvec
tor problem

Fm~KV!2S «mb1
]«ma

]Eb
EaD1~KV!

]«mr

]Ha
ha

tsbErKtVs

2KmKb1~KV!VmKb1K2hmb2~KV!2hmbGeb50,

~16!

which results from Eqs.~13! and~14!. The Fresnel equation
represents nontrivial solutions of the Eq.~16! and is given by
the determinant of the term multiplied byeb .

Now, let us analyze anisotropic media whose physi
properties are influenced by an external electric field as

«mb5«~E!~hmb2VmVb!2a~E!EmEb, ~17!

where we denotedEaEa52E2. Indeed, such anisotrop
turns out to be a reaction of the material medium to
influence of the external electric field. Each particular m
dium is then characterized by the parametersa ande. Con-
sidering Eq.~17!, we obtain from Eq.~15!
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ebKb5
1

E~e1aE2!

]

]E
~e1aE2!EaEbeaKb . ~18!

Taking the product ofEm with Eq. ~16! and introducing Eq.
~18!, it results in the light cone condition

K25S 12m
]V

]E D ~KV!21
1

V

]

]E S V

E DEmEnKmKn ,

~19!

where we introduced the quantityV5E(e1aE2). The con-
dition ~19! on wave propagation can be presented in a m
appealing form as

gmnKmKn50, ~20!

where

gmn5hmn2S 12m
]V

]E DVmVn2
1

V

]

]E S V

E DEmEn.

~21!

Equation~20! states that the discontinuities of the electr
magnetic field propagate along null geodesics of an effec
geometry, which for the media defined by Eq.~17! is deter-
mined by Eq.~21!. The associated phase velocity yields

v25
1

m]V/]E F11
1

V

]

]E S V

E D ~EW • k̂!2G , ~22!

wherek̂ is a spacelike unit vector in theKW direction. In the
derivation of the expression~22!, we have assumed the pa
ticular choice of the velocityVm5dm

0 . The refraction index is
given byn51/v.

To study birefringence phenomena, we have to solve
eigenvector problem~16!. In fact, by choosing an appropri
ated basis@7# to expand the polarization four-vectorem
5aEm1bHm1cKm1dVm , we obtain that there will be two
different light rays propagating in the medium. An ordina
ray with velocity

vo
25

1

m~e1aE2!
, ~23!

and another one, the extraordinary ray, with velocity giv
by Eq. ~22!. The velocity of the extraordinary ray takes th
same value of the one corresponding to the ordinary ray
the case whereEW • k̂5uEW u. Both velocities will be the same in
the case wheree1aE25const. Thus, birefringence of th
electromagnetic waves occurs whenever](V/E)/]EÞ0.

Let us summarize some cases contained in the effec
metric ~21!:

~a! For a50 and e constant, results the Gordon@1,5#
effective metric~1!.

~b! For a50 ande5e(E), we obtain the isotropic cas
@6,7# with propagation determined by

gmn5hmn2F12m
]~eE!

]E GVmVn2
1

eE

]e

]E
EmEn. ~24!
2-2
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~c! For a ande constants, we obtain the effective geom
etry

gmn5hmn2@12m~e13aE2!#VmVn1
2a

~e1aE2!
EmEn,

~25!

which determines the Kerr electro-optic effect@7,12#.
In this paper, we derived the light cone conditions f

light propagating inside generally anisotropic material me
whose physical properties depend on an external ele
field. The wave vector appears as a null vector of an effec
curved geometry representing a modification of the flat ba
ground metric. Indeed, if we require an underlying Riema
ian structure for the manifold associated with the effect
geometry it can be shown@11# that the integral curves of th
vectorKm are geodesics, i.e., satisfy the geodesic equati

gmnKa;mKn50. ~26!
v.
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To apply the formalism developed here, we need to kn
the properties of each particular medium where the w
propagation is considered by means of the constitutive r
tions characterized by the tensors«mn andmmn .

An effective geometry can be derived for each situat
and can be used in the study of the properties of light pro
gation. With such geometrical description, we present to
for testing kinematic aspects of gravitation in laboratory,
issue very much addressed these days@2–6#. For instance,
we could ask about the possibility of formation of structur
such as event horizons.

The derivation of the effective geometry associated w
arbitrary media characterized by«mn(Ea ,Ha) and
mmn(Ea ,Ha) deserves further investigation.
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